91 research outputs found

    Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection

    Get PDF
    Functional magnetic resonance imaging can demonstrate the functional anatomy of cognitive processes. In patients with refractory temporal lobe epilepsy, evaluation of preoperative verbal and visual memory function is important as anterior temporal lobe resections may result in material specific memory impairment, typically verbal memory decline following left and visual memory decline after right anterior temporal lobe resection. This study aimed to investigate reorganization of memory functions in temporal lobe epilepsy and to determine whether preoperative memory functional magnetic resonance imaging may predict memory changes following anterior temporal lobe resection. We studied 72 patients with unilateral medial temporal lobe epilepsy (41 left) and 20 healthy controls. A functional magnetic resonance imaging memory encoding paradigm for pictures, words and faces was used testing verbal and visual memory in a single scanning session on a 3T magnetic resonance imaging scanner. Fifty-four patients subsequently underwent left (29) or right (25) anterior temporal lobe resection. Verbal and design learning were assessed before and 4 months after surgery. Event-related functional magnetic resonance imaging analysis revealed that in left temporal lobe epilepsy, greater left hippocampal activation for word encoding correlated with better verbal memory. In right temporal lobe epilepsy, greater right hippocampal activation for face encoding correlated with better visual memory. In left temporal lobe epilepsy, greater left than right anterior hippocampal activation on word encoding correlated with greater verbal memory decline after left anterior temporal lobe resection, while greater left than right posterior hippocampal activation correlated with better postoperative verbal memory outcome. In right temporal lobe epilepsy, greater right than left anterior hippocampal functional magnetic resonance imaging activation on face encoding predicted greater visual memory decline after right anterior temporal lobe resection, while greater right than left posterior hippocampal activation correlated with better visual memory outcome. Stepwise linear regression identified asymmetry of activation for encoding words and faces in the ipsilateral anterior medial temporal lobe as strongest predictors for postoperative verbal and visual memory decline. Activation asymmetry, language lateralization and performance on preoperative neuropsychological tests predicted clinically significant verbal memory decline in all patients who underwent left anterior temporal lobe resection, but were less able to predict visual memory decline after right anterior temporal lobe resection. Preoperative memory functional magnetic resonance imaging was the strongest predictor of verbal and visual memory decline following anterior temporal lobe resection. Preoperatively, verbal and visual memory function utilized the damaged, ipsilateral hippocampus and also the contralateral hippocampus. Memory function in the ipsilateral posterior hippocampus may contribute to better preservation of memory after surgery

    252. Prediction of subject-specific SAR distribution in MSK MR exam at 7 T

    Get PDF
    Purpose we predict SAR during MRI exam using a 7 T 1H 298 MHz eight-channel degenerate birdcage coil1 combining SAR simulations with subject-specific measured (RF) maps. Materials and Methods We simulated the coil1 in CST MW Suite, loaded by a model of human knee (Fig. 1, top). was calculated in an axial slice crossing the patella. The maximum local SAR for an Axial “Zero” Time-of-Echo (ZTE) sequence “SILENT”2 was calculated. We acquired maps of an adult (female) knee with a Bloch-Siegert sequence on 7 axial slices, centered on the same slice of the simulation, on a GE MR950 7T human system. For each slice a coefficient C, proportional to avg, was used to scale the SAR simulated3. Results Fig. 1 shows: bottom left, simulated magnitude; bottom center, local SAR for an input of 1 W per channel; bottom right, simulated magnitude for a FA = 90° (length = 3.2 ms) sinc-pulse in the slice previously chosen. Fig. 2 shows the subject-specific measured for a FA = 90° sinc-pulse. The predicted SAR obtained with scaled maps are 0.50 W/kg (global) and 3.68 W/kg (maximum). Conclusions we obtained a good agreement between simulated and measured in vivo maps, and we were able to calculate the distribution of SAR exposure, a safety MRI parameter not available in current exams, where only global SAR is provided, combining simulations and subject-specific measurements. Limits on global and local SAR (20 W/kg) were met for this sequence [1], [2], [3]

    Imaging language pathways predicts postoperative naming deficits

    Get PDF
    Naming difficulties are a well recognised, but difficult to predict, complication of anterior temporal lobe resection (ATLR) for refractory epilepsy. We used MR tractography preoperatively to demonstrate the structural connectivity of language areas in patients undergoing dominant hemisphere ATLR. Greater lateralisation of tracts to the dominant hemisphere was associated with greater decline in naming function. We suggest that this method has the potential to predict language deficits in patients undergoing ATLR

    Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography

    Get PDF
    Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinical magnetic resonance imaging sequences. Diffusion tensor tractography is an advanced magnetic resonance imaging technique that enables the parcellation of white matter. Using seed voxels antero-lateral to the lateral geniculate nucleus, we applied this technique to 20 control subjects, and 21 postoperative patients. All patients had visual fields assessed with Goldmann perimetry at least three months after surgery. We measured the distance from the tip of Meyer's loop to the temporal pole and horn in all subjects. In addition, we measured the size of temporal lobe resection using postoperative T1-weighted images, and quantified VFDs. Nine patients suffered VFDs ranging from 22% to 87% of the contralateral superior quadrant. In patients, the range of distance from the tip of Meyer's loop to the temporal pole was 24–43 mm (mean 34 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –15 to +9 mm (mean 0 mm). In controls the range of distance from the tip of Meyer's loop to the temporal pole was 24–47 mm (mean 35 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –11 to +9 mm (mean 0 mm). Both quantitative and qualitative results were in accord with recent dissections of cadaveric brains, and analysis of postoperative VFDs and resection volumes. By applying a linear regression analysis we showed that both distance from the tip of Meyer's loop to the temporal pole and the size of resection were significant predictors of the postoperative VFDs. We conclude that there is considerable variation in the anterior extent of Meyer's loop. In view of this, diffusion tensor tractography of the optic radiation is a potentially useful method to assess an individual patient's risk of postoperative VFDs following anterior temporal lobe resection

    Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection

    Get PDF
    Functional magnetic resonance imaging can demonstrate the functional anatomy of cognitive processes. In patients with refractory temporal lobe epilepsy, evaluation of preoperative verbal and visual memory function is important as anterior temporal lobe resections may result in material specific memory impairment, typically verbal memory decline following left and visual memory decline after right anterior temporal lobe resection. This study aimed to investigate reorganization of memory functions in temporal lobe epilepsy and to determine whether preoperative memory functional magnetic resonance imaging may predict memory changes following anterior temporal lobe resection. We studied 72 patients with unilateral medial temporal lobe epilepsy (41 left) and 20 healthy controls. A functional magnetic resonance imaging memory encoding paradigm for pictures, words and faces was used testing verbal and visual memory in a single scanning session on a 3T magnetic resonance imaging scanner. Fifty-four patients subsequently underwent left (29) or right (25) anterior temporal lobe resection. Verbal and design learning were assessed before and 4 months after surgery. Event-related functional magnetic resonance imaging analysis revealed that in left temporal lobe epilepsy, greater left hippocampal activation for word encoding correlated with better verbal memory. In right temporal lobe epilepsy, greater right hippocampal activation for face encoding correlated with better visual memory. In left temporal lobe epilepsy, greater left than right anterior hippocampal activation on word encoding correlated with greater verbal memory decline after left anterior temporal lobe resection, while greater left than right posterior hippocampal activation correlated with better postoperative verbal memory outcome. In right temporal lobe epilepsy, greater right than left anterior hippocampal functional magnetic resonance imaging activation on face encoding predicted greater visual memory decline after right anterior temporal lobe resection, while greater right than left posterior hippocampal activation correlated with better visual memory outcome. Stepwise linear regression identified asymmetry of activation for encoding words and faces in the ipsilateral anterior medial temporal lobe as strongest predictors for postoperative verbal and visual memory decline. Activation asymmetry, language lateralization and performance on preoperative neuropsychological tests predicted clinically significant verbal memory decline in all patients who underwent left anterior temporal lobe resection, but were less able to predict visual memory decline after right anterior temporal lobe resection. Preoperative memory functional magnetic resonance imaging was the strongest predictor of verbal and visual memory decline following anterior temporal lobe resection. Preoperatively, verbal and visual memory function utilized the damaged, ipsilateral hippocampus and also the contralateral hippocampus. Memory function in the ipsilateral posterior hippocampus may contribute to better preservation of memory after surgery

    Structural neural networks subserving oculomotor function in first-episode schizophrenia

    Get PDF
    BACKGROUND: Smooth pursuit and antisaccade abnormalities are well documented in schizophrenia, but their neuropathological correlates remain unclear. METHODS: In this study, we used statistical parametric mapping to investigate the relationship between oculomotor abnormalities and brain structure in a sample of first-episode schizophrenia patients (n = 27). In addition to conventional volumetric magnetic resonance imaging, we also used magnetization transfer ratio, a technique that allows more precise tissue characterization. RESULTS: We found that smooth pursuit abnormalities were associated with reduced magnetization transfer ratio in several regions, predominantly in the right prefrontal cortex. Antisaccade errors correlated with gray matter volume in the right medial superior frontal cortex as measured by conventional magnetic resonance imaging but not with magnetization transfer ratio. CONCLUSIONS: These preliminary results demonstrate that specific structural abnormalities are associated with abnormal eye movements in schizophrenia

    Motor system hyperconnectivity in juvenile myoclonic epilepsy: a cognitive functional magnetic resonance imaging study

    Get PDF
    Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy

    The effect of filter size on VBM analyses of DT-MRI data

    No full text
    Voxel-based morphometry (VBM) has been used to analyze diffusion tensor MRI (DT-MRI) data in a number of studies. In VBM, following spatial normalization, data are smoothed to improve the validity of statistical inferences and to reduce inter-individual variation. However, the size of the smoothing filter used for VBM of DT-MRI data is highly variable across studies. For example, a literature review revealed that Gaussian smoothing kernels ranging in size (full width at half maximum) from zero to 16 mm have been used in DT-MRI VBM type studies. To investigate the effect of varying filter size in such analyses, whole brain DT-MRI data from 14 schizophrenic patients were compared with those of 14 matched control subjects using VBM, when the filter size was varied from zero to 16 mm. Within this range of smoothing, four different conclusions regarding apparent patient control differences could be made: (i) no significant patient-control differences; (ii) reduced FA in right superior temporal gyrus (STG) in patients; (iii) reduced FA in both right STG and left cerebellum in patients; and (iv) reduced FA only in left cerebellum in patients. These findings stress the importance of recognizing the effect of the matched filter theorem on VBM analyses of DT-MRI data. Finally, we investigated whether one of the underlying assumptions of parametric VBM, i.e., the normality of the residuals, is met. Our results suggest that, even with moderate smoothing, a large number of voxels within central white matter regions may have non-normally distributed residuals thus making valid statistical inferences with a parametric approach problematic in these areas. Published by Elsevier Inc
    corecore